NUMERICAL METHODS 
FOR MATHEMATICAL PHYSICS INVERSE PROBLEMS
The aim of this course is solving of mathematical physics inverse problems.
1. Introduction. Inverse problems of mathematical physics
We analyze a phenomenon. We observe some events. There exists a cause of these events. Then we try determining relations between events and its cause with using of lows of the corresponding science. If these relations can be formulated by mathematical language, then we get the mathematical model of the analyzed phenomenon. We will consider three easy mathematical models of different science:

· Physics: the fall of the body.

· Chemistry: the synthesis of the hydrochloric acid.
· Biology: “the predator-prey” model. 

· Economics: the competition.
We will determine a standard difficulty of using of these models. Then we will determine the notions of the direct and inverse problems, and the basic idea of solving of inverse problems. We discuss the ill-posedness as general difficulty of the inverse problems.
1.1. The fall of the body
We determine the fall of a body. This phenomenon is described by the height x, which depends from time. This movement can be described by the second Newton’s low 
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 where F is the force, m is the mass, and a is the acceleration. 

The mass m is the characteristic of the body. Then there exists a relation between the acceleration a and the coordinate x. It is known that the derivative 
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of the coordinate x is the velocity v of the movement, and the derivative of the velocity is the acceleration a. So we have the equality 
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 The force F consists of the weight P and the friction force Q. Note that the direction of the weight is sideways of the movement; and the direction of the friction force is against the movement. Therefore, we have the equality 
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 The weight can be determine by the formula 
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 where g is the gravitational acceleration. The friction force is proportional to the velocity of the body; so we have the equality 
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 where k is the friction coefficient. Hence, we get the equality
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We obtained second order differential equation with respect to the unknown function x. We add also the corresponding initial conditions
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where 
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is the initial height of the body, and 
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 is its initial velocity. Hence, we have Cauchy problem (1.1), (1.2) as a mathematical model of the movement of the body.
1.2. The synthesis of the hydrochloric acid
We consider the synthesis of the hydrochloric acid by the chemical reaction
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Hence, two molecules 
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 of the hydrochloric is the result of the reaction between one molecule 
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 of the hydrogen and one molecule 
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 of the chlorine. This phenomenon can be described by the concentrations of all substances. Let x, y, and z be the concentrations of the hydrogen, chlorine, and hydrochloric acid.
We try to determine a mathematical model of this reaction. The velocity 
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 of the change of hydrogen concentration is proportional to this concentration because if we have many its molecules then many molecules react. So we have the equality 
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 with some coefficient a. We have the sign “minus” because the concentration of the hydrogen decreases after the reaction. However, the velocity of the change of hydrogen concentration is proportional to the concentration of the chlorine too, because if we have many molecules of the chlorine then many molecules of the hydrogen react. Therefore, we have the differential equation
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where the constant b is called the velocity of the reaction.
The velocity of the change of the chlorine concentration is equal to the hydrogen one, because we have the reaction one molecule of the hydrogen and one molecule of the chlorine. Therefore, we have the analogical equation
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Then the velocity of the change of the hydrochloric acid concentration is as much again than the hydrogen one because we obtain two molecule of the hydrochloric acid for each molecule of the hydrogen. Note that the hydrochloric acid concentration increases after reaction. Therefore, it derivative is positive. Hence, we get the equation
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We add also the initial conditions
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where 
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 are initial concentrations of our substances. The system of the differential equations (1.3) – (1.5) with initial conditions (1.6) is the mathematical model of given reaction. 

1.3. The “predator-prey” model
We consider two biological species. One of them lives second species. The population of the species can describe this phenomenon. Let x be the population of the prey, and y be the population of the predator. We would like to determine its dependence from the time.

Let us have a population of species. Then the more individuals will be born and die in a unit of time. Therefore, the velocity of the change of the species population is proportional to the value of this population. Hence, we get the equality
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where 
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 are the increments of the prey and the predator. Determine these characteristics. 
If we do not have any predators, then the population of preys increases with a velocity 
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 because the preys do not have any enemy. However, if there exist predators then the increment 
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 will be less than 
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 Certainly, the decrease of the increment is proportional to the population of predators. So we have the formula 
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 with a parameter 
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. Analogically if we do not have any preys, then the population of the predators decreases with a velocity 
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 because the predators do not have any eat. However, if there exist preys then the increment 
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[image: image31.wmf]2

.

а

-

 Certainly, the increase of the increment is proportional to the number of preys. Hence, we have the formula 
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 with a parameter 
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Thus, our phenomenon is described by the system of differential equations
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We consider these equations with initial conditions 
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where 
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 are initial population of the species. The system of the differential equations (1.7), (1.8) with initial conditions (1.9) is the mathematical model of this biological system. 

1.4. The competition

Consider the market with two firms that product the same goods. This system is described by funds of the firms x and y.
1.5. Direct and inverse problems

The considered models involve two classes of characteristics, apart from independent variable time t. There are state functions and system parameters (see Table 1.1). The state functions are the basic characteristics of the phenomenon. The system parameters characterize the concrete system from the large class of analogical systems. 
Table 1.1. State functions and system parameters of the models

	Model
	state functions
	system parameters

	fall of a body
	height x
	gravitational acceleration g,
friction coefficient k,
initial height x0,
initial velocity v0

	synthesis of the hydrochloric acid
	concentration of the hydrogen x,
concentration of the chlorine y,
concentration of the hydrochloric acid z
	velocity of the reaction b, 

initial concentration x0, y0, z0,

	“predator-prey” model
	population of the preys x,
population of the predators y
	coefficients of the increments
a1, b1, a2, b2,

initial number of species x0, y0

	competition
	funds of the firms x, y
	coefficients a1, b1, a2, b2,
initial funds of the firms x0, y0


Definition 1.1. The direct problem is the problem of finding the state functions by all given parameters of the system.

Definition 1.2. The inverse problem is the problem of finding system parameters by the given information about the state functions.

For example, Cauchy problems (1.1) – (1.2), (1.3) – (1.6), and (1.7) – (1.9) with given system parameters are the direct problems of our systems. The system parameters are determined as a rule by experiment. However sometimes we cannot to determine some parameters by experiment because of serious difficulties. It is true, for example, for the friction coefficient for the model of the fall of the body, the velocity of the reaction for the model of the synthesis of the hydrochloric acid, and coefficients of the increments of species for the “predator-prey” model. In this situation it is necessary to make the identification of the model by solving of an inverse problem. Some experimental information about state function is used in this case.

Determine an inverse problem for the phenomenon of the fall of the body. Let us know the height of the body at the time 
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where 
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 is a result of the experiment at the time 
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 The inverse problem for the phenomenon of the fall of the body is the problem of finding of the parameter k such that the corresponding solution of Cauchy problem (1.1), (1.2) satisfies the equalities (1.10). The analogical problems can be stated for other models.

We will consider later inverse problems for classical mathematical physics problems, particularly, for the Poisson equation, the heat equation, and the wave equation. 

1.5. Basic idea of solving of the inverse problems

Consider the abstract direct problem. It can be described by the operator equation
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where a is parameter (it can be number, vector, function, vector function, etc.), u is the state (it can be function or vector function with one or many variables), 
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 is an operator (it can have different form). We add additional equality
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where B is an operator of measuring, and y is a result of measuring. Then we have the inverse problem. This is finding of the parameter a such that the corresponding solution u of the equation (1.11) satisfies the equality (1.12). For example, Cauchy problem (1.1), (1.2) can be present as an operator equation (1.11) with state x and parameter k. The operator B maps the function to the r-dimensional vector; it can be determine by the equality
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The result of measuring y is the vector 
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 in this case.

The basic idea of analyses of the inverse problem is its transformation to the optimal control problem. We can determine the functional 


[image: image47.wmf]()(),

m

Ia

Вuaу

=-


where 
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 is the solution of the equation (1.11) for the concrete parameter a, and m is a positive number. It is chosen often equal to 2. We obtain the problem of the minimization of the functional I. 

Determine the relation between inverse and optimization problems. If a is the solution of the given inverse problem then the equality (1.12) is true, and the corresponding value of the functional I is zero. So this is the solution of the optimal control problem too because the norm is nonnegative; and it equals to zero only for zero value of the function. If a is the solution of the optimal control problem (optimal control), and the corresponding value of the functional is zero, then the equality (1.12) is true because of the property of the norm. If the minimum of the function is positive, then the inverse problem is unsolvable. However, the solution of the optimization problem gives the best value of the parameter with respect to the measuring. Therefore, we can solve the inverse problems with using of methods of the optimization control theory.

The functional I for the inverse problem for the phenomenon of the fall of the body can be determine by the formula
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So we have the norm of the Euclid space  
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 Therefore, our inverse problem is transformed to the problem of minimization of this functional with the function x that depends from k; it is determined by Cauchy problem (1.1), (1.2).

Hence, the practical methods of solving of the inverse problems are optimization methods.
1.6. Well-posedness of problems

It is known the following notion.
Definition 1.3. The problem is called well-posed if it has a unique solution, and its dependence from the considered parameters is continuous. The problem is called ill-posed if it is not well-posed.
The problem (1.11) is well-posed if for all parameter a there exists a unique solution u of this equation, and the dependence of the solution from this parameter is continuous. If the problem is ill-posed then the small error of parameters can result in a large error of the solution. The ill-posed problems are difficult enough for the practical resolution. There exist many well-posed practical direct problems. It is true for the considered models. However, inverse problems are ill-posed as a rule. Hence, the numerical methods for the inverse problems do not reliable enough.
We consider Hadamard example. Let us have Laplace equation
                                                          uxx  +  uyy  =  0 .                                                     (1.13)                                         
on the semi-plane  у > 0 . Determine two additional conditions (initial conditions) 
                                                  u(x,0)  = (k(x) = k-1 sin kx,  uy(x,0)  =  0,                                   (1.14)
where a positive parameter k is given. We have Cauchy problem for Laplace equation. It has the unique solution
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After the passing to the limit as  k ( (  at the conditions (1.14) we obtains the equalities

                                                   u(x,0) = (((x) = 0 ,  uy(x,0) = 0 ,                                      (1.15)

The problem (1.13), (1.15) has the unique solution u( = 0. However, we do not have the convergence of the solutions sequence {uk} to the limit solution u(. If the parameter k is large enough the initial values of the functions (k and (( are close enough. However, its values for positive y are not close enough. Therefore, we do not have the continuity of the solution of Cauchy problem for Laplace equation from its initial dates. Thus, this problem is ill-posed.
What we have in the practical situation. Let (( is real value of the initial state, and (k is its measured value (result of the experiment). If our experiment is good enough the values (k and (( are close enough. Then we solve the problem (1.13), (1.14) because we know measured initial state only. We find the solution uk, and we would like to use it as an approximate solution uk of the given system. However, this result does not close enough to the real state function u(. So we cannot any possibility to use our function uk. Besides, if we have an ill-posed problem the small values of the calculations errors can provoke the large error of the result.  
The inverse problems are ill-posed as a rule. 
Task 1 
It is necessary to determine the minimizing functionals for the given forms of measuring for the state function 
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